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A B S T R A C T

We study the gamma-ray emission from an outer-gap accelerator around a rotating neutron

star. Assuming the existence of global currents in the magnetosphere, the charge depletion

causes a large electric field along the magnetic field lines. This electric field accelerates

migratory electrons and positrons, which radiate gamma-rays via curvature radiation. These

gamma-rays produce radiating particles by colliding with the X-rays, maintaining a pair-

production cascade in the gap accelerator. Imposing a gap-closure condition that a single

pair produces one pair in the gap on average, we explicitly solve the strength of the

acceleration field and demonstrate how the luminosity of the curvature-radiated, GeV

photons depends on the pulsar parameters such as the surface temperature, the rotational

frequency and the magnetic moment. It is predicted that J043724715 is a possible candidate

to be detected by a next-generation gamma-ray telescope like GLAST. We further explicitly

show that the TeV flux emitted from the outer gap of a typical rotation-powered pulsar is too

weak to be detected by current ground-based telescopes.

Key words: magnetic fields ± pulsars: individual: B0656114 ± pulsars: individual:

B1055252 ± pulsars: individual: Geminga ± pulsars: individual: J043724715 ± pulsars:

individual: Vela.

1 I N T R O D U C T I O N

The EGRET experiment on the Compton Gamma Ray Observa-

tory has detected pulsed signals from at least six rotation-powered

pulsars, which are known traditionally as radio pulsars. Interpret-

ing g-rays should be less ambiguous compared with non-thermal

X-rays. Therefore, g -rays are particularly important as a direct

signature of basic non-thermal processes in pulsar magnetospheres

and potentially should help to discriminate among different

emission models.

Attempts to model the g-ray emission have concentrated on two

scenarios: polar-cap models with emission altitudes of ,104 cm to

several neutron star radii over a pulsar polar-cap surface (Harding,

Tademaru & Esposito 1978; Daugherty & Harding 1982, 1996;

Dermer & Sturner 1994; Sturner, Dermer & Michel 1995; also see

Scharlemann, Arons & Fawley 1978 for the slot-gap model) and

outer-gap models with acceleration occurring in the open-field

zone located near the light cylinder (Cheng, Ho & Ruderman

1986a,b, hereafter CHRa,b; Chiang & Romani 1992, 1994).

Recently, Romani & Yadigaroglu (1995) developed the outer-gap

models for the beaming of high-energy g-ray emission that

reproduces the observed properties of individual g-ray pulsars.

Subsequently, Romani (1996) described an emission model for

g-ray pulsars based on curvature radiation-reaction-limited

charges and estimated the efficiency of GeV photon production

as a function of pulsar parameters such as pulsar age, magnetic

field strength, B (G) and magnetic inclination, a i.

However, in order to understand the g-ray emission mechanism,

the acceleration field, Ek, in the gap is crucial. It was Hirotani &

Shibata (1999a,b,c; hereafter Papers I, II and III) who first solved

the spatial distribution of Ek together with particle and g-ray

distribution functions. They explicitly demonstrated that the outer

gap is formed around the null surface where the local Goldreich±

Julian charge density

rGJ �
VBz

2pc�1 2 �V4=c�2� �1�

vanishes, where Bz is the component of the magnetic field along

the rotation axis, V refers to the angular frequency of the neutron

star and 4 indicates the distance of the point from the rotation

axis. This expression for rGJ is justified if the electric field is

approximated by the corotational field or, equivalently, if the

voltage drop in the gap is small compared with the available

electromotive force exerted on a spinning neutron star surface,

Vp , 1015:5V2
2m30 V:

If the transfield thickness of the gap, D', is comparable with or

greater than the longitudinal half width, H, then Ek distributes

quadratically having the peak at the null surface. However, if
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D' is less than H, then the gap shifts outwards owing to the

two-dimensional effect in the Poisson equation. For a very thin

gap �D' ! H�; the inner boundary approaches the null surface

while the outer boundary approaches the light cylinder, of which

distance from the rotation axis is given by the so-called `light

cylinder radius',

4LC � c

V
� 3:0 � 108V21

2 cm; �2�

where c is the speed of light and V2 ; V=102 rad s21: Since Ek is

shown to be kept almost constant throughout the gap in this thin

case �D' ! H�; this solution justifies the hypothesized gap

structure in CHRa,b.

In this paper, instead of solving the spatial distribution of Ek,
we evaluate its representative value by averaging Ek throughout

the gap. Imposing a gap-closure condition that a single pair

produces one pair in the gap on average, we demonstrate how

the peak energy and the luminosity of g-rays depend on

parameters such as the rotation, magnetic moment and the

surface temperature of the neutron star. In the next section, we

consider the gap-closure condition. Solving the condition, we

investigate the gap half width H and the resultant g-ray emission

from the gap in Section 3. We further apply the theory to

individual pulsars in Section 4. In the final section, we discuss

the validity of assumptions and consider the difference from the

model of Zhang and Cheng (1997), who considered another gap-

closure condition.

2 S T R U C T U R E O F T H E G A P

2.1 Vacuum acceleration field

It is demonstrated in Paper I that there is a stationary solution for

an outer gap immersed in a less dense X-ray field around a

middle-aged pulsar and that the structure of the gap along the

magnetic field lines is symmetric with respect to the null surface if

the transfield thickness of the gap is large in the sense of D' . H:
In this paper, we consider such a one-dimensional gap by

introducing a rectilinear coordinate; x is an outwardly increasing

coordinate along the magnetic field lines, while z is parallel to the

rotational axis. We define x � 0 to be the intersection between the

last open field line and the null surface where Bz � 0 (Fig. 1).

Supposing the magnetic fields to be straight lines along x and

approximating the null surface by the z axis, we can Taylor-

expand rGJ around x � 0 to obtain the following Poisson equation

for the non-corotational potential, F:

2
d2F

dx2
� 24pAx; �3�

where A denotes the expansion coefficient of rGJ at the null

surface �x � 0�: Since the toroidal current flowing near the light

cylinder is unknown, we simply approximate Bz with its

Newtonian value. Then equation (1) gives A as follows:

A ;
3Vm

2pcr4
0

1

1 2 �Vr0 sin u0=c�2

� 3

2
sin 2u0 cos 2�u0 2 ai�1 cos 2u0 sin�u0 2 ai�

� �
; �4�

where m refers to the magnetic dipole moment of the neutron star.

The position (r0, u0) in the polar coordinate represents the centre

of the gap �x � 0�: They are given by

r0

4LC

;
4

4 1 tan2 u0

2 tan2 ai 1 3 1
�������������������������
9 1 8 tan2 ai

p
�4=3� tan2 ai 1 3 1

�������������������������
9 1 8 tan2 ai

p ; �5�

tan u0 ;
3 tanai 1

�������������������������
9 tan2 ai 1 8

p
2

: �6�

As an typical inclination, we adopt ai � 308 in this paper; in

this case, we obtain A � 3:19 � 10212V5
2m30; r0 � 0:404LC and

u0 � 688; where m30 � m=1030 G cm3:
Integrating equation (3), we obtain the acceleration field Ek ;

2dF=dx � Ek�0�2 2pAx2; where Ek(0) refers to the value of Ek
at x � 0: Defining the boundaries of the gap to be the places

where Ek vanishes, we obtain Ek�0� � 2pAH2: We can evaluate

the typical strength of Ek by averaging its values throughout the

gap as follows:

�Ek � 1

H

�H

0

dx�Ek�0�2 2pAx2�

� 4

3
pAH2

� 3:61 � 1010V3
2m30

H

4LC

� �2
V

m
: �7�

In the last line, we substitute A � 3:19 � 10212V5
2m30 esu

assuming ai � 308:

2.2 Pair-production mean free path

The most effective assumption for the particle motion in the gap

arises from the fact that the velocity saturates immediately after

their birth in the balance between the radiation reaction force and

the electric force. For a wide range of parameters, the reaction

force is due to curvature radiation (CHRa,b; Paper I). Equating the

electric force eEk and the radiation reaction force, we obtain the

Figure 1. A side view of a hypothetical outer magnetospheric gap in which

a pair-production cascade takes place. g-ray photons are produced

primarily by curvature radiation.
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saturated Lorentz factor at each point as follows:

G � 3R2
c
�Ek

2e

� �1=4

� 9:59 � 107�R2
0:5V2m30�1=4 H

4LC

� �1=2

; �8�

where R0.5 is the curvature radius Rc divided by 0.54LC and e

refers to the magnitude of the charge on the electron. In the second

line, we assumed ai � 308: Using this G, we obtain the central

energy of curvature radiation,

Ec � 3G3

2

"c

Rc

� 174�R2
0:5V

7
2m

3
30�1=4 H

4LC

� �3=2

GeV; �9�

where " is the Planck constant divided by 2p. In the second line,

we assumed ai � 308: In this paper, we adopt the grey approxi-

mation in the sense that all the g -rays are radiated at energy Ec. In

the final section, we will justify the grey approximation by

comparing quantitatively with the non-grey cases (Hirotani &

Shibata 1999c), in which they discarded the grey approximation

and considered the g-ray spectra explicitly to solve the Boltzmann

equations for g-rays together with those for particles and the

Poisson equation for the electrostatic potential.

Let us now consider how the X-ray field determines the pair-

production mean free path. First, equation (9) gives the threshold

energy for soft photons to materialize as pairs by colliding with

g-rays having energy mec2eg � Ec;

Eth � 2

1 2 mc

mec2

eg
; �10�

where mc refers to the cosine of the three-dimensional collisional

angle between the g-rays and the X-rays.

To evaluate m c, we first consider the g-ray's toroidal momenta

due to aberration. At the gap centre, the aberration angle f abb is

given by tan21�r0 sin u0=4LC�: In the case of ai � 308; we obtain

fabb � 208: 4: In this case, the collisional angle on the poloidal

plane becomes uc � 908 2 u0 � 218: 6 (or uc � 908 1 u0 � 1588: 4�
for outwardly (respectively inwardly) propagating g-rays. We thus

obtain mc � cosfabb sin uc � ^0:345; where the upper and the

lower sign correspond to the outwardly and inwardly propagating

g-rays, respectively.

On these grounds, assuming ai � 308; we can rewrite equation

(10) as

Eth � 2:99

1 2 mc

�R2
0:5V

7
2m

3
30�21=4 H

4LC

� �23=2

eV: �11�

Let us next consider the pair-production mean free path, l s,

for a g-ray photon to materialize in a collision with one of the

soft blackbody X-rays. If only outwardly propagating g -rays

were to contribute, l s would be evaluated at the gap centre �x � 0�
as

1

ls;0
;
�1

2=�12mc�eg
dex

dNs

dex

� �
0

sp�eg; ex;mc�; �12�

where mc � 0:345 and the pair-production cross section is given

by (Berestetskii, Lifshitz & Pitaevskii 1989):

sp�eg; ex;mc� ;
3

16
sT�1 2 v2� �3 2 v4� ln 1 1 v

1 2 v
2 2v�2 2 v2�

� �
;

v�eg; ex;mc� ;

���������������������������������
1 2

2

1 2 mc

1

egex

s
; �13�

sT is the Thomson cross section and ex ; Ex=mec2 refers to the

non-dimensional energy of the X-ray photon. We may notice here

that the non-dimensional threshold energy �Eth=mec2� appears in

the lower bound of the integral in equation (12). The number

density of the soft blackbody X-rays between energies mec
2ex and

mec2�ex 1 dex� at the gap centre �x � 0� is given by the Planck

law:

dNs

dex

� �
0

� 1

4p2

mec2

c"

� �3
As

4pr2
0

� �
e2

x

exp�ex=Ds�2 1
; �14�

where As indicates the observed radius of the blackbody emitting

region; Ds is defined by

Ds ;
kT s

mec2
; �15�

where kTs refers to the soft blackbody temperature measured by a

distant observer. Since the outer gap is located outside of the deep

gravitational potential well of the neutron star, the photon energy

there is essentially the same as the distant observer measures.

In a realistic outer gap, not only the outwardly propagating

g-rays but also the inwardly propagating ones contribute to l s,0.

Therefore, we compute l s,0 by taking an arithmetic average as

follows:

1

ls;0
; k

�1

2=�12mc�eg
dex

dNs

dex

� �
0

sp�eg; ex;mc�

1 �1 2 k�
�1

2=�11mc�eg
dex

dNs

dex

� �
0

sp�eg; ex;2mc�: �16�

The first (respectively, the second) term represents the con-

tribution from the outwardly (respectively, inwardly) propagating

g-rays; we adopt mc � 0:345 for ai � 308:
Let us consider the weight factor, k , which reflects the ratio of

the fluxes between outwardly and inwardly propagating g-rays.

Before moving on to this task, however, it is helpful to point out

that the conserved current is maintained by positrons in most

potions of the gap. This can be demonstrated if we solve the

Boltzmann equations for positrons and electrons by the method

presented in Paper III. The solutions of the fluxes of positrons

(thick curve) and electrons (thin curve) as a function of x are given

in Fig. 2. The parameters are chosen to be ai � 308; V2 � 0:5;
m30 � 1:0; kT s � 70 eV and x � 0:1: The asymmetry comes from

the asymmetric distribution of the X-ray density; that is, the pair-

production rate decreases rapidly as the distance from the neutron

star increases.

Because of the positronic dominance, the outwardly propagat-

ing g-rays dominate the inwardly propagating ones. In Fig. 3, we

present the nFn spectra of the outwardly (thick curve) and the

inwardly (thin curve) propagating g -rays, which are emitted by

the positrons (respectively electrons) via curvature radiation; they

are measured at the outer (respectively inner) boundary of the

gap. The flux ratio between the outwardly and inwardly

propagating g-rays is 12 at the peak in this case. This ratio
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resides between 10 and 20 for a wide range of parameters

20 eV , kT s , 100 eV; 0:25 , V2 , 1:00; 0:3 , m30 , 3:0 and

158 , ai , 458:
In short, the flux of the outwardly propagating g-rays is

typically about ten times larger than the inwardly propagating one.

Therefore, we adopt k � 0:9 in this paper. In the final section, we

justify this weight factor by comparing with the non-grey cases

described in Paper III (table 3).

When the X-ray field is dominated by the blackbody radiation

from the whole surface of a cooling neutron star, the true mean

free path, lp,0, equals l s,0. However, it is possible that another

X-ray component is emitted from limited regions of the star

surface, such as heated polar caps. In this case, lp,0 can be

reasonably estimated by (Beskin, Istomin & Par'ev 1992):

1

lp;0
� 1

ls;0
1

1

lh;0
; �17�

where lh,0 refers to the mean free path for a g-ray photon to

materialize in a collision with one of the X-rays of the additional

component. If this additional component is approximately

represented by a blackbody emission with temperature kTh with

an area Ah, lh,0 is given by

1

lh;0
; k

�1

2=�12mc�eg
dex

dNh

dex

� �
0

sp�eg; ex;mc�

1 �1 2 k�
�1

2=�11mc�eg
dex

dNh

dex

� �
0

sp�eg; ex;2mc�: �18�

with k � 0:9; and the X-ray number density is evaluated at the gap

centre �x � 0�:
dNh

dex

� �
0

� 1

4p2

mec2

c"

� �3
Ah

4pr2
0

� �
e2

x

exp�ex=Ds�2 1
; �19�

Dh ;
kTh

mec2
: �20�

Finally, we consider the variation of the X-ray field with the

distance from the star. The X-ray densities at position x are

obtained by dividing (dNs/dex)0 and (dNh/dex)0 by the factor that

is proportional to the square of the distance from the star. There-

fore, the local pair-production mean free path at x is given by

1

lp�x; eg� �
1

f �x=4LC�
�1

2=�12mc�eg
dex

dNs

dex

� �
0

1
dNh

dex

� �
0

� �
sp;

�21�
where

f �a� ; 1 1 2a sin u0 1 a2 �22�
represents the variation of the X-ray density with x�� a4LC�:

2.3 Gap closure

The gap width 2H is adjusted so that a single pair produces

copious g-ray photons (of number Ng), one of which materializes

as a pair on average. Since a typical g-ray photon runs the length

H in the gap before escaping from either of the boundaries, the

probability of a g -ray photon to materialize within the gap, Ng
21,

must coincide with the optical depth for absorption, H/lp.

Considering the position dependence of lp on x, we obtain the

following gap-closure condition:

1

Ng
� 1

2

�H

2H

dx

lp

; �23�

where

Ng <
H

c

4e2G

9"Rc

� 6:22 � 105 V2m30

R2
0:5

� �1=4
H

4LC

� �3=2

: �24�

It follows that the optical depth for pair production, N21
g ; is much

less than unity (see Section 5 for details).

Substituting equation (21) into (23), we obtain

1

Ng
� H

lp;0
I

H

4LC

� �
; �25�

where lp,0 is defined by equation (17) and

I�h� ;
tan21�tan u0 1 h sec u0�2 tan21�tan u0 2 h sec u0�

2h cos u0

: �26�

Figure 3. The nFn spectra of outwardly (thick curve) and inwardly (thin

curve) propagating g-rays. The ordinate is normalized arbitrarily.

Synchrotron radiation, which dominates below several hundred MeV, is

not included in the calculation because it is energetically negligible.

Figure 2. Positronic (thick curve) and electronic (thin curve) fluxes as a

function of the position in the gap; the gap centre corresponds to the point

x � 0: The fluxes are computed by the method presented in Paper III;

parameters are chosen to be ai � 308; V2 � 0:5; m30 � 1:0; kT s � 70 eV:

The current density is set to be 10 per cent of the Goldreich±Julian value

(i.e. x � 0:1 is assumed). It is assumed that no particles are injected into

the gap from the boundaries.
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For a very thin gap �h � H=4LC ! 1�; I(h) approaches unity.

Combining equations (17), (25) and (24), we finally obtain the

equation that describes H=4LC as a function of B5, V2, kTs, As,

kTh and Ah.

2.4 Gamma-ray luminosity

Let us first consider the luminosities of curvature-radiated g-rays.

Remembering the fact that most of the g-rays are emitted by

positrons, we can estimate the luminosity of the curvature-radiated

g-rays, LGeV, by multiplying the total number of positrons in the

gap, Ne, the number of g-rays emitted per unit time by a single

positron (or almost equivalently by a single pair), Ng=�H=c�; and

the g-ray energy, Ec. That is, we have

LGeV � Ne � Ng

H=c
� Ec: �27�

Evaluating the conserved current density by x�VB=2pe�; where

�VB=2pe� refers to the Goldreich±Julian number density, and

assuming that the gap extends p�H=4LC� rad in the azimuthal

direction, we obtain

Ne , x
VB

2pce
´
pH

4LC

´ r0 sin u0 ´ D' ´ 2H: �28�

The distance of the centre of the gap from the rotation axis,

r0 sin u0, becomes 0.374LC for ai � 308: Substituting equations

(9), (24) and (28) into (27), we obtain

LGeV , 1:19 � 1039 x
D'

4LC

� �
V4

2m
2
30

H

4LC

� �4

ergs s21: �29�

In Papers I, II and III it is demonstrated that stationary solutions

exist even when D' becomes comparable with H. We thus assume

a transversely thick outer gap with D' � 0:34LC: If D' is much

less than this value, as assumed in CHRa,b, the g-ray luminosity

becomes much less than would be obtained under D' � 0:34LC:
As for x, its maximum values will be about 0.2 for a wide range of

values of the parameters kTs, V and m (Papers I, II, III), provided

that no particles enter from the boundaries. If particles enter from

the boundaries, x is allowed to be as large as unity. However,

x , 1 violates the assumption of the vacuum gap; therefore, we

assume x , 0:1 in this paper.

Secondly, let us consider the luminosity of Compton-scattered

g-rays, LTeV. We should notice here that it is the infrared photons

with energy ,0.1 eV that contribute most effectively as the target

photons of inverse Compton (IC) scattering. Neither the higher

energy photons, such as surface blackbody X-rays, nor the lower

energy photons, such as those from polar radio emission,

contribute as the target photons, because either they have cross

sections that are too small or the energy transfer when they are

scattered is too small. The collisional frequency for a particle to

scatter inversely the infrared photons of number density N0.1 eV is

given by cN0.1 eVsT. Considering the fact that the maximum

energy of the scattered photons is Gmec
2, we can evaluate the

upper limit of the TeV emission as

LTeV , Ne � cN0:1 eVsT � Gmec2

� 1:25 � 1035 x
D'

4LC

� �
V

13=4
2 m

5=4
30 R

1=2
0:5 L30

� H

4LC

� �5=2

ergs s21; �30�

where L30 refers to the luminosity of infrared photons that can be

scattered up to TeV energy range in units of 1030 ergs s21. The

ratio between LTeV and LGeV then becomes

LTeV

LGeV

, 1:04 � 1024L30
R2

0:5

V3
2m

3
30

 !1=4
H

4LC

� �23=2

: �31�

It follows that TeV luminosities are much less than GeV ones for

moderate values of parameters. The effect of pair production due

to TeV±eV photon collisions is, therefore, self-consistently

negligible compared with that due to GeV±keV collisions.

3 G A M M A - R AY R A D I AT I O N V E R S U S

S U R FAC E B L AC K B O DY T E M P E R AT U R E

Once H=4LC is obtained from equation (25), we can compute all

other quantities by using equations (7)±(10) and (24)±(30). To

this aim, we first show the results of H=4LC as a function of kTs,

V and m in Section 3.1. We then study the voltage drop in the gap

in Section 3.2 and the g-rays emission in Section 3.3. Throughout

this section, we assume that the X-rays illuminating the gap are

emitted from the whole neutron star surface. Therefore, we neglect

the presence of the hard blackbody component and put lh � 1 in

equation (17) and As � Ap ; 4pr2
* in equation (14) in this

section, where rp refers to the neutron star radius and is supposed

to be 10 km in this paper. Such a situation will be realized if most

of the hard X-rays emitted from heated polar caps are scattered

back to the stellar surface owing to cyclotron resonance

scatterings and re-emitted as soft X-rays (Daugherty & Harding

1989; Halpern & Ruderman 1993).

3.1 Gap half width

Solving equation (25) for H=4LC; we obtain the gap half width as

a function of kTs. The results are presented in Fig. 4. The thick

solid, dashed, dotted lines correspond to m30 � 1:0; 3.0 and 0.3

with V2 � 0:5; respectively, while the thin dashed and dotted ones

to V2 � 0:75 and 0.25 with m � 1:0: The curvature radius is fixed

as R0:5 � 1:0:

Figure 4. Examples of the gap half width, H, divided by the light cylinder

radius, 4LC, as a function of kTs, V and B. Both the abscissa and the

ordinate are in logarithmic scales. The thick solid, dashed and dotted lines

correspond to �V2;m30� � �0:5; 1:0�; (0.5,3.0) and (0.5,0.3), respectively,

while the thin dashed and dotted lines correspond to (1.0,1.0) and

(0.25,1.0), respectively.
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First of all, it follows from the figure that H=4LC is a

decreasing function of kTs. The reason is as follows: if kTs

increases, the number density of target soft photons Ns�E . Eth�
above threshold for pair production increases for a fixed value of

Eth. The increased Ns�E . Eth� results in the decrease of lp,

which reduces H (equation 25). For more accurate discussion, we

must take account of the fact that the resultant increase of Eth

partially cancels the reduction of H: the reduced H results in a

decrease of Ek and hence Ec. This in turn increases Eth to

decrease Ns�E . Eth�; as a result, lp partially increases. In

addition, the reduction of H implies the reduction in the emitting

length for a particle, thereby decreasing Ng to partially cancel the

initial decease of H through equation (25). Nevertheless, both of

the two effects are passive; therefore, the nature of the decrease of

H with increasing kTs is unchanged.

The three thick lines in Fig. 4 indicate that H=4LC decreases

with increasing m . This is because the expansion coefficient A

(equation 3) increases with increasing m . That is, the increase of A

results in a strong acceleration field (see next subsection) with a

small gap width.

The three thin lines indicate that H=4LC decreases with

increasing V. For a large V, the gap shrinks to increase the photon

density Ns�E . Eth�; which decreases H.

From the numerical results, a useful approximated solution can

be obtained as follows:

H

4LC

� 0:0484V20:85
2 m20:36

30

kT s

100 eV

� �20:83

: �32�

The error is within 6 per cent in the parameter range 0:25 ,
V2 , 1:0; 0:3 , m30 , 3:0 and 20 eV , kT s , 100 eV: The

lower bound of kTs is determined so that H , 0:54LC may

hold, whereas the upper bound comes from the requirement that

the particles be mono-energetic.

3.2 Acceleration field and voltage drop

The representative value of the acceleration field, Ek, can be

readily computed from equations (7) and (32). The result is

�Ek � 8:7 � 107V1:29
2 m0:28

30

kT s

100 eV

� �21:67
V

m
: �33�

Thus, the terminal Lorentz factor becomes as large as

G � 2:1 � 107V20:18
2 m0:07

30 R0:5
0:5

kT s

100 eV

� �20:42

: �34�

The dependences on m are very small. Note that both Ek and G
decrease with increasing kTs.

The voltage drop in the gap, Vgap � �Ek ´ H; is given by

Vgap ;
8

3
pAH3 � 1:9 � 1017V2

2m30

H

4LC

� �3

V: �35�

It follows that for a cooling neutron star having a temperature as

small as ,40 eV, H , 0:24LC gives Vgap , 1015 V; this corre-

sponds to roughly 30 per cent of Vp, the surface EMF. To sum up,

more spin-down luminosity will be converted into g-ray emission

for older pulsars, because

Vgap

Vp
� 6:8 � 1023V22:6

2 m21:1
30

kT s

100 eV

� �22:5

�36�

increases with decreasing V2 and kTs.

3.3 Curvature radiation

Let us next consider the energy and luminosity of curvature

radiation. Substituting equation (32) into (9), we obtain

Ec � 1:9V0:47
2 m0:21

30 R0:5
0:5

kT s

100 eV

� �21:3

GeV: �37�

When kTs is as high as 100 eV, Ec becomes typically a few GeV.

However, if the neutron star cools down to kT s , 20 eV; it

becomes as large as 12 eV. For a realistic neutron star, not only kTs

but also V2 become small as it evolves; thus, the tendency of

growing Ec with age will be partially cancelled due to the decrease

of V.

Substituting the results of H=4LC into equation (29), we obtain

the g-ray luminosity due to curvature radiation as

LGeV � 2:0 � 1032 x

0:1

D'

0:34LC

� �
V0:59

2 m0:56
30

� kT s

100 eV

� �23:33

ergs s21: �38�

We can conclude that both the peak energy and the luminosity of

the GeV g-rays are a decreasing function of kTs. This fact is

deeply related to the increase of target X-ray photons for pair

production with increasing kTs.

3.4 Inverse Compton scattering

The relativistic particles produce g-rays mainly via curvature

radiation as described in the preceding sections. However, even

though energetically negligible, it is useful to draw attention to the

TeV g-rays produced via IC scatterings. First, it follows from

equations (32) and (8) that the upper cut-off energy of TeV g-rays

is given by

Gmec2 � 10:8V20:18
2 m0:07

30 R0:5
0:5

kT s

100 eV

� �20:42

TeV: �39�

Therefore, the upper cut-off energy virtually depends on the

surface temperature, kTs.

Secondly, substituting the relation (32) into (30), we obtain the

g-ray luminosity due to IC scatterings as

LTeV , 1:9 � 1030 x

0:1

D'

0:34LC

� �
V1:11

2 m0:35
30 R0:5

0:5L30

� kT s

100 eV

� �22:08

ergs s21: �40�

We can see that both the cut-off energy and the luminosity of TeV

g-rays are a decreasing function of kTs for the same reason as

GeV emission.

4 A P P L I C AT I O N T O I N D I V I D UA L P U L S A R S

In this section, we apply the theory to six pulsars. We present in

Table 1 their observed X-ray properties in order of spin-down

luminosity, EÇ rot.

(i) Vela. From ROSAT observations in the 0.06±2.4 keV band,

the spectrum of its point source (presumably the pulsar) emission

is expressed by two components: a surface blackbody component

with kT s � 150 eV and As � 0:066Apd2
0:5 and a power-law
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component with a photon index of 23.3. However, the latter com-

ponent does not show pulsations; therefore, we consider only the

former component as the X-ray field illuminating the outer gap.

(ii) B0656114. Combining ROSAT and ASCA data, Greivel-

dinger et al. (1996) reported that the X-ray spectrum consists of

three components: the soft surface blackbody component with

kT s � 67 eV and As � 4:5Apd2
0:76 at a distance of 760 pc, a hard

blackbody component due to polar-cap heating with kTh �
129 eV and Ah � 3:2 � 1022Apd2

0:76; and a power-law component

with a photon index of 21.5. Since the area of the heated polar

cap is relatively large, the hard blackbody component takes the

major role in maintaining the gap; we thus neglect the power-law

component and use equation (17) to compute lp.

(iii) Geminga. The X-ray spectrum consists of two compo-

nents: the soft surface blackbody component with kT s � 48 eV

and As � 0:16Apd2
0:16; and a hard power-law component with a

photon index of 21.6 (Halpern & Wang 1997). However, the latter

component is negligible, because H=4LC is overestimated by only

0.3 per cent if we compute lp from the former component alone.

A parallax distance of 160 pc was estimated from HST observa-

tions (Caraveo et al. 1996).

(iv) B1055252. Combining ROSAT and ASCA data, Greivel-

dinger et al. (1996) reported that the X-ray spectrum consists of

two components: the soft blackbody component with kT s � 68 eV

and As � 7:3Apd2
1:53 and a hard blackbody component due to polar-

cap heating with kTh � 320 eV and Ah � 2:3 � 1024Apd2
1:53:

(v) J043724715. Using ROSAT and EUVE data (Becker &

TruÈmper 1993; Halpern and Ruderman 1996), Zavlin and Pavlov

(1998) demonstrated that both the spectra and the light curves of

its soft X-ray radiation can originate from hot polar caps with a

non-uniform temperature distribution and be modelled by step-

like functions having two different temperatures. The first com-

ponent is the emission from a heated polar-cap core with tempera-

ture kTh � 140115
245 eV measured at the surface and with an area

Ah � �7:2132:8
21:6 � � 1024Ap: The second component can be inter-

preted as a cooler rim around the polar cap on the neutron star

surface with temperature kT s � 3716
211 eV and with an area As �

�1:417:6
20:4� � 1022Ap: Considering a gravitational redshift factor of

0.76, the best-fit temperatures observed at infinity become kT s �
28 eV and kTh � 106 eV: From parallax measurements, its

distance is reported to be 178 ^ 26 pc (Sandhu et al. 1997). We

adopt d � 180 pc as a representative value.

For all the five pulsars, the radiative reaction force is dominated

by the curvature process rather than the IC scatterings, because

Pcurv=PIC is much greater than unity. Moreover, the acceleration

length, lacc is less than the gap half width, H; therefore, the particle

distribution can be considered to be mono-energetic in the first

order of approximation. As for the central energy of curvature

radiation, Ec, it follows that the GeV spectrum of J043724715

and Geminga should be much harder than Vela, B0656114 and

B1055252. The reason that Geminga has hard GeV spectra is that

its number density of X-rays at the gap is significantly smaller

compared with the latter three pulsars. For the millisecond pulsar

J043724715, its very small curvature radius Rc results in the hard

curvature radiation.

Moreover, we obtain the expected GeV fluxes of individual

pulsars by dividing LGeV by d2. It follows from the seventh column

that J043724715 is a possible candidate to be observed in a future

mission. The properties of Ec and LGeV will be able to be checked

by GLAST, which will help us to discriminate among different

models of high-energy emission from pulsar magnetospheres.

Let us finally point out the fact that LTeV is much less than LGeV

(the last column in Table 2). It follows that the TeV emissions

from the outer gaps of these five rotation-powered pulsars are

unobservable with the current ground-based telescopes. It is

noteworthy that the same conclusion can be derived if we discard

the gap closure condition (equation 23) and solve instead the

Vlasov equations describing the gap under appropriate boundary

conditions (Hirotani 2000).

5 S U M M A RY A N D D I S C U S S I O N

In summary, for pulsars whose X-ray field at the outer-gap is

dominated by surface blackbody radiation, the curvature process

dominates inverse Compton scattering to limit the particle Lorentz

factor below 5 � 107: Imposing the gap-closure condition that a

single pair produces one pair in the gap on average, we can solve

the gap width as a function of kTs, V and m ; this allows us to

compute further other quantities such as the energy and the

Table 2. Expected properties of curvature-radiated g -rays.

Pulsar Pcurv=PIC lacc=H H=4LC Ec LGeV
a LGeV

a/d2 Gmec
2 LTeV=LGeV

GeV erg s21 erg s21 cm22 TeV

Vela 7:4 � 106 0.70 0.052 2.0 3:7 � 1032 1:6 � 10210 13.2 , 3:3 � 1023 L30b
B0656114 5:8 � 106 0.33 0.16 1.4 3:2 � 1032 5:9 � 10211 18.3 , 2:0 � 1023 L30

Geminga 5:6 � 108 0.073 0.28 3.7 3:0 � 1033 1:3 � 1028 21.1 , 1:2 � 1023 L30

B1055252 1:1 � 106 0.45 0.13 1.2 1:4 � 1032 6:7 � 10212 13.8 , 4:6 � 1023 L30

J043724715 1:5 � 108 0.053 0.31 4.6 4:6 � 1032 1:5 � 1029 6.6 , 4:2 � 1022 L30

a The GeV emissions are assumed to be beamed in 1 steradian.
b L30 indicates the infrared luminosity in the unit of 1030 ergs s21.

Table 1. Input X-ray field.

Pulsar log10EÇ rot Distance V log10m kTs As=A* kTh Ah=Ap

lg(erg s21) kpc rad s21 lg(G cm3) keV keV

Vela 36.84 0.50 61.3 30.53 150 0.066 ± ±
B0656114 34.58 0.76 15.3 30.67 67 4.5 129 1021.49

Geminga 34.51 0.16 26.5 30.21 48 0.16 ± ±
B1055252 34.48 1.53 31.9 30.03 68 7.3 320 1023.64

J043724715 33.60 0.178 1092 26.50 28 0.014 106 1022.28
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luminosity of g-ray radiation. It is demonstrated that the central

energy (Ec) and the luminosity (LGeV) of curvature radiation and

the cut-off energy (Gmec
2) and the luminosity (LTeV) of inverse

Compton scattering increase with decreasing surface temperature

(kTs); this is because the X-ray density decreases with decreasing

kTs. It should be noted that TeV fluxes for typical pulsar

parameters are negligibly small compared with the GeV fluxes

and hence difficult to detect using current ground-based telescopes.

To discuss the relationship between Lg and the spin-down

luminosity, we must know how the current flowing in the gap

depends on m and V. However, the current, which is proportional

to ceNeD' / xD'; should be decided by a global condition in the

magnetosphere rather than by a local condition in the gap (Shibata

1995). Thus, we will not discuss this topic further.

Let us show the validity of assumptions that have been made in

this paper. First, we check whether the gap width does not exceed

the light cylinder radius. It follows from Fig. 4 that H=4LC

exceeds 0.5 at kT s � 20 eV for a small V�< 25 rad s21� or a small

m�< 3 � 1029 G cm3�: We thus set the lower bound of kTs to be

20 eV in Fig. 4.

Secondly, we must check that the acceleration length, lacc, is

sufficiently less than H so that most of the particles attain the

terminal Lorentz factor (equation 8). Substituting equations (7)

and (8) into lacc � Gmec2=eEk; we obtain

lacc

H
� 5:1 � 1024�R2

0:5V
27
2 m23

30 �1=4 H

4LC

� �25=2

: �41�

Substituting the results of H=4LC (Fig. 4) into this equation, we

find that lacc , H is satisfied for kT s , 100 eV: Therefore, we

adopt the upper limit of kTs as 100 eV in the figure.

Thirdly, it is worth noting that the optical depth for pair

production within the gap, H=lp � N21
g ; is kept well below unity.

This condition is necessary for the gap closure relation (25) to be

justified. Substituting the results of H=4LC (Fig. 4) into equation

(24), we obtain Ng as a function of V, m and kTs as depicted in

Fig. 5. It follows from Fig. 5 that N21
g is always much less than

unity for V . 25 rad s21; m , 3 � 1030 G cm3 and 20 eV , kT s ,
100 eV: In other words, the condition lacc ! H is much more

severe than N21
g ! 1:

The same can be said for the parameter set of a typical

millisecond pulsar. In Fig. 6, we present the results of lacc=H as a

function of kTs. For the three thick curves, V is fixed at

103 rad s21; the solid, dashed and dotted curves are assigned m �
1027; 1028 and 1026 G cm3, respectively. The thin dashed and

dotted curves correspond to V � 2 � 103 and 5 � 102 rad s21;
respectively; m is fixed at 1027 G cm3. It follows from Fig. 6 that

the applicable range of kTs is bounded as

kT s , 90 eV
m

1027 G cm3

� �20:1 V

103 rad s21

� �20:33

�42�

by the requirement of lacc , H: On the other hand, the optical

depth

N21
g , 1023:5 kT s

100 eV

� �1:2 m

1027 G cm3

� �0:3� V

103 rad s21

� �1:2

�43�
is kept much less than unity also for millisecond pulsars as long as

kTs is below the upper bound (equation 42).

Fourthly, we can check the validity of the grey approximation

adopted in the present paper by comparing the results with those

obtained in the non-grey analysis in which the energy spectra of

g-rays are explicitly considered. Such a non-grey analysis was

Figure 5. The average number of g-rays radiated by a single particle

during its migration in the whole gap. Both the abscissa and the ordinate

are in logarithmic scales. The five curves correspond to the same

parameter sets as in Fig. 2.

Figure 6. Acceleration length divided by the gap half width as a function

of the surface temperature. Both the abscissa and the ordinate are in

logarithmic scales. The parameters are chosen to be typical for millisecond

pulsars (see text).

Table 3. This work versus non-grey cases.

a i V m kTs H/4LC

rad s21 G cm3 eV This work Non-greya

308 50 1030 70 0.117 0.116
308 50 3 � 1030 70 0.080 0.086
308 50 3 � 1029 70 0.180 0.161
308 25 1030 70 0.221 0.202
308 100 1030 70 0.063 0.067
308 300 1028 70 0.117 0.101
308 1000 1027 70 0.088 0.072
308 50 1030 40 0.187 0.187
308 50 1030 100 0.087 0.085
08 50 1030 70 0.241 0.191

158 50 1030 70 0.180 0.156
458 50 1030 70 0.062 0.066
608 50 1030 70 0.022 0.058

a The non-grey cases are calculated by the method presented
in Paper III.
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performed in Paper III, in which the distribution functions of the

g-rays and particles and the acceleration field Ek�x� ;
2dF�x�=dx were examined by solving simultaneously the

Boltzmann equations for g-rays and particles and the Poisson

equation for the potential F(x). The results of H=4LC computed

from the present grey analysis and the non-grey one in Paper III

are compared in Table 3. It follows from the table that the grey

approximation gives good estimates of H=4LC as the first order

approximation, provided that 158 , ai , 458 holds. For a highly

oblique rotator �ai , 608�; the grey approximation (equation 9)

adopted in this paper gives too small a gap width.
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